US 2006/0031815 Al

[0120] Peripheral hardware environments, on the other
hand, change more frequently. E.g., workload bearing (line/
CPU) cards (e.g., blades) are often added/removed; mezza-
nine card slots/headers can be filled with optional hardware
products; disk drives come and go; etc.

[0121] Accordingly, in some embodiments, the present
invention supports changing peripheral hardware environ-
ments by providing for automating changes to the descrip-
tion block when needed (see FIG. 3). In particular, in some
embodiments, the present invention supports discovery of
changes and related updates. Discovery, in this context,
involves detecting changes in the hardware environment.
Those skilled in the art will understand that there are many
ways to implement discovery. Most discovery technologies
are very particular to a specific hardware environment. For
instance, some hardware is designed to raise some form of
asynchronous event (via some interrupt line, an I2C bus
message or some other form of input). (An I2C (Inter-IC)
bus is a bi-directional two-wire serial bus that provides a
communication link between integrated circuits (ICs).)
Some convention exists to then name/identify the hardware
changes announced by this asynchronous event.

[0122] Regardless of how discovery takes place, this
invention provides for the ability to address discovered
changes by simply activating/de-activating different periph-
eral device descriptions. Alternatively, in some embodi-
ments, this invention can obtain needed peripheral device
descriptions from a remote source (e.g., over a network, via
a serial port or the like). The Dynamic Discovery Monitor
(DMM) according to embodiments of the present invention
is shown in FIG. 3.

[0123] Description changes themselves can trigger asso-
ciated logic—which typically employs some event-condi-
tion-action (ECA) trigger mechanism/method. In some
aspects, embodiments of the present invention include the
option of creating a so-called “active” repository of logical/
physical descriptions. This amounts to an active description
block (see FIG. 3). Again, this can be done without any
change to the nature/size/layout of fixed software/firmware
image. No new software/firmware needs to be dynamically
linked or dynamically loaded. There is no need for a
software/firmware re-initialization.

[0124] The block-of-bits may be considered to be like an
opaque union of all the different data structures that this
block of bits (64-256, or more) might represent—within a
given schema. The layout/contents of the block-of-bits
depends upon the logical/physical description scheme being
used. Facet logic (from getters/setters to operational behav-
iors—like power on/off/recycle) always applies to a given
scheme (with the schema). Since the facet logic knows what
assumptions it can make about its scheme, at run-time it can
appropriately cast the block-of-bits it receives.

[0125] Most logic is higher-level than facet logic, which
means that most logic treats the block-of-bits as opaque.
Most logic just feeds in the given instance’s corresponding
description details/values into facets as the block-of-bits.
Most logic knows nothing about how to interpret/use this
block-of-bits. In this sense, the block-of-bits is usually
opaque. However, the specific facet logic does know just
how the block-of-bits is laid out (and thus how to interpret/
use it).

[0126] Aspects of the present invention may be considered
to be a way to declaratively describe entities with a nested/
hierarchy of prototypes (rather than types), along with ways

Feb. 9, 2006

to make all prototype slot/facet interfaces uniform/consis-
tent (within a given over-arching schema). Within a given
schema, some number of bits (e.g., 64, 128 or 256) are
always passed as a universal/singular argument to all pro-
totyped behaviors/methods/functions.

[0127] The binding of a type to the usually-opaque block
is delayed, past run-time initialization, all the way down to
the entry point of scheme-specific, scheme-facet-implemen-
tation module. This type-to-block-of-bits binding is repeated
whenever this module is entered. By late binding in this
manner, the present invention provides a way to greatly
expand the expressive range of declarative (prototyped)
schema. This, in turn allows data-driven firmware/software
logic, according to embodiments of the present invention, to
be far more widely applicable which, in turn, makes a single,
fixed-size firmware/software image far more flexible/appli-
cable/valuable.

[0128] Although the present invention has been described
with reference to specific exemplary embodiments and
examples, it will be evident that various modifications and
changes may be made to these embodiments without depart-
ing from the broader spirit and scope of the invention as set
forth in the claims. Accordingly, the specification and draw-
ings are to be regarded in an illustrative rather than restric-
tive sense.

We claim:

1. Amethod for producing a fixed-size firmware image for
a hardware device, parameterized for a plurality of compo-
nent environments, the method comprising:

providing a logical description of aspects of said plurality
of component environments;

providing a physical description of physical aspects of
said plurality of component environments;

associating said logical description with said physical
description;

providing said firmware image to include a plurality of
parameterized functions to support said hardware
device in each of said plurality of component environ-
ments.

2. A method as in claim 1 wherein said hardware device
is selected from the group comprising: power supplies,
busses; fans, disk drives, sensors, and flash parts.

3. A method as in claim 1 wherein actual arguments to
said parameterized functions are bound at run time.

4. A method as in claim 1 wherein actual argument to each
of said parameterized functions is a fixed-sized block of bits
whose interpretation is context sensitive.

5. Amethod as in claim 4 wherein each block of bits is the
same fixed size.

6. A method as in claim 5 wherein each block of bits is
between 64 and 256 bits long.

7. A method as in claim 1 wherein the firmware image
comprises:

an operational block including abstract device driver
interfaces for said hardware device; and

a description block that includes said logical and physical
descriptions.
8. Amethod as in claim 4 wherein the actual argument to
each of said parameterized functions is cast at run-time into
a run-time context determined type.



